MATH 141: Quiz 3
Name: $\frac{k c y}{\alpha}$
Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

1. A function $f(x)$ is continuous at $x=-3$. Using the mathematical definition of continuity, state the three conditions that must be true.
(1) $f(-3)$ is defined
(2) $\lim _{x \rightarrow-3} f(x)$ exists
(3) $\lim _{x \rightarrow-3} f(x)=f(-3)$
2. Using the definition of continuity, determine whether the following function is containyous at $x=0$:

$$
f(x)= \begin{cases}(x-1)^{2} & x>0 \\ 0 & x=0 \\ (x+1)^{2} & x<0\end{cases}
$$

(1) $f(0)=0$
(2)

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x-1)^{2}=\left(\lim _{x \rightarrow 0^{+}} x-\lim _{x \rightarrow 0^{+}} 1\right)^{2}=(0-1)^{2}=1 \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(x+1)^{2}=\left(\lim _{x \rightarrow 0^{-}} x+\lim _{x \rightarrow 0^{-}}\right)^{2}=(0+1)^{2}=1
\end{aligned}
$$

$$
\therefore \lim _{x \rightarrow 0} f(x)=1
$$

3. State in interval notation where this function is continuous:

$$
f(x)=\frac{\sin \left(x^{2}+1\right)}{2 x^{2}-5 x+2}-\sqrt{2 x-2}
$$

Find domain:
(1) Problems:
(a) division by 0 .

$$
\begin{gathered}
2 x^{2}-5 x+2=0 \\
(2 x-1)(x-2)=0 \\
2 x-1=0 \quad x-2=0 \\
x=\frac{1}{2}, x=2
\end{gathered}
$$

(b) Square rout of negative.

$$
\begin{array}{r}
2 x-2<0 \\
x<1
\end{array}
$$

(2) Remade pablums from \mathbb{R}

Domain: $(1,2) \cup(2, \infty)$
Because this function is continuous on its dovanain, $f(x)$ is continues on $(1,2) \cup(2, \infty)$.

